Performance comparison of generational and steady-state asynchronous multi-objective evolutionary algorithms for computationally-intensive problems

نویسندگان

  • Alexandru-Ciprian Zavoianu
  • Edwin Lughofer
  • Werner Koppelstätter
  • Günther Weidenholzer
  • Wolfgang Amrhein
  • Erich-Peter Klement
چکیده

In the last two decades, multi-objective evolutionary algorithms (MOEAs) have become ever more used in scientific and industrial decision support and decision making contexts the require an a posteriori articulation of preference. The present work is focused on a comparative analysis of the performance of two master-slave parallelization (MSP) methods, the canonical generational scheme and the steady-state asynchronous scheme. Both can be used to improve the convergence speed of multi-objective evolutionary algorithms that must use computationally-intensive fitness evaluation functions. Both previous and present experiments show that a correct choice for one or the other parallelization method can lead to substantial improvements with regard to the overall duration of the optimization process. Our main aim is to provide practitioners of MOEAs with a simple but effective method of deciding which MSP option is better given the particularities of the concrete optimization process. This in turn, would give the decision maker more time for articulating preferences (i.e., more flexibility). Our analysis is performed based on 15 well-known MOOP benchmark problems and two simulation-based industrial optimization process from the field of electrical drive design. For the first industrial MOOP, when comparing with a preliminary study, applying the steadystate asynchronous MSP enables us to achieve an overall speedup (in terms of total wall-clock computation time) of ≈ 25%. For the second industrial MOOP, applying the steady-state MSP produces an improvement of ≈ 12%. We focus our study on two of the best known and most widely used MOEAs: the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Performance of Master-Slave Parallelization Methods for Multi-Objective Evolutionary Algorithms

This paper is focused on a comparative analysis of the performance of two master-slave parallelization methods, the basic generational scheme and the steady-state asynchronous scheme. Both can be used to improve the convergence speed of multi-objective evolutionary algorithms (MOEAs) that rely on time-intensive fitness evaluation functions. The importance of this work stems from the fact that a...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

Asynchronous Master-Slave Parallelization of Differential Evolution for Multi-Objective Optimization

In this paper, we present AMS-DEMO, an asynchronous master-slave implementation of DEMO, an evolutionary algorithm for multi-objective optimization. AMS-DEMO was designed for solving time-intensive problems efficiently on both homogeneous and heterogeneous parallel computer architectures. The algorithm is used as a test case for the asynchronous master-slave parallelization of multi-objective o...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2015